A Neurotrophin Signaling Cascade Coordinates Sympathetic Neuron Development through Differential Control of TrkA Trafficking and Retrograde Signaling
نویسندگان
چکیده
A fundamental question in developmental biology is how a limited number of growth factors and their cognate receptors coordinate the formation of tissues and organs endowed with enormous morphological complexity. We report that the related neurotrophins NGF and NT-3, acting through a common receptor, TrkA, are required for sequential stages of sympathetic axon growth and, thus, innervation of target fields. Yet, while NGF supports TrkA internalization and retrograde signaling from distal axons to cell bodies to promote neuronal survival, NT-3 cannot. Interestingly, final target-derived NGF promotes expression of the p75 neurotrophin receptor, in turn causing a reduction in the sensitivity of axons to intermediate target-derived NT-3. We propose that a hierarchical neurotrophin signaling cascade coordinates sequential stages of sympathetic axon growth, innervation of targets, and survival in a manner dependent on the differential control of TrkA internalization, trafficking, and retrograde axonal signaling.
منابع مشابه
Long-Distance Control of Synapse Assembly by Target-Derived NGF
We report a role for long-distance retrograde neurotrophin signaling in the establishment of synapses in the sympathetic nervous system. Target-derived NGF is both necessary and sufficient for formation of postsynaptic specializations on dendrites of sympathetic neurons. This, in turn, is a prerequisite for formation of presynaptic specializations, but not preganglionic axonal ingrowth from the...
متن کاملRecruitment of Actin Modifiers to TrkA Endosomes Governs Retrograde NGF Signaling and Survival
The neurotrophins NGF and NT3 collaborate to support development of sympathetic neurons. Although both promote axonal extension via the TrkA receptor, only NGF activates retrograde transport of TrkA endosomes to support neuronal survival. Here, we report that actin depolymerization is essential for initiation of NGF/TrkA endosome trafficking and that a Rac1-cofilin signaling module associated w...
متن کاملPincher-mediated macroendocytosis underlies retrograde signaling by neurotrophin receptors.
Retrograde signaling by neurotrophins is crucial for regulating neuronal phenotype and survival. The mechanism responsible for retrograde signaling has been elusive, because the molecular entities that propagate Trk receptor tyrosine kinase signals from the nerve terminal to the soma have not been defined. Here, we show that the membrane trafficking protein Pincher defines the primary pathway r...
متن کاملp75 and TrkA signaling regulates sympathetic neuronal firing patterns via differential modulation of voltage-gated currents.
Neurotrophins such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) act through the tropomyosin-related receptor tyrosine kinases (Trk) and the pan-neurotrophin receptor (p75) to regulate complex developmental and functional properties of neurons. While NGF activates both receptor types in sympathetic neurons, differential signaling through TrkA and p75 can result in wi...
متن کاملMultivesicular bodies mediate long-range retrograde NGF-TrkA signaling
The development of neurons in the peripheral nervous system is dependent on target-derived, long-range retrograde neurotrophic factor signals. The prevailing view is that target-derived nerve growth factor (NGF), the prototypical neurotrophin, and its receptor TrkA are carried retrogradely by early endosomes, which serve as TrkA signaling platforms in cell bodies. Here, we report that the major...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 118 شماره
صفحات -
تاریخ انتشار 2004